회원 로그인 창


로그인 메뉴

따끈따끈! 신착 전자책

더보기

콘텐츠 상세보기
비 유클리드 기하학 (Non -Euclidean Geometry, by HenryManning)


SMART
 

비 유클리드 기하학 (Non -Euclidean Geometry, by HenryManning)

HenryManning 저 | 뉴가출판사

출간일
2020-03-11
파일형태
PDF
용량
38 M
지원 기기
PC
대출현황
보유1, 대출0, 예약중0
콘텐츠 소개
목차
한줄서평

콘텐츠 소개

비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning
2000년 이전쯤의 그리스 수학자 유클리드의 기하학에서 1650년경의 뉴톤의 수학으로부터 1900년도 초에 비유클리드기하학 및 미적분학이 영국에서 발달하고 1916년도경에 아이슈타인의 상대성이론이 나옴.
이책 즉, 비유클리드기하학은 미국의 브라운대학교 교수가 1901년도에 지은책.
HENRY PARKER MANNING, Ph.D.
Assistant Professor of Pure Mathematics
in Brown University
PREFACE
Non-Euclidean Geometry is now recognized as an important branch of Mathematics. Those who teach Geometry should have some knowledge of this subject,
and all who are interested in Mathematics will find much to stimulate them and
much for them to enjoy in the novel results and views that it presents.
This book is an attempt to give a simple and direct account of the Non Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The first three chapters assume a knowledge of only Plane and Solid
Geometry and Trigonometry, and the entire book can be read by one who has
taken the mathematical courses commonly given in our colleges.
No special claim to originality can be made for what is published here. The
propositions have long been established, and in various ways. Some of the proofs
may be new, but others, as already given by writers on this subject, could not be
improved. These have come to me chiefly through the translations of Professor
George Bruce Halsted of the University of Texas.
I am particularly indebted to my friend, Arnold B. Chace, Sc.D., of Valley
Falls, R. I., with whom I have studied and discussed the subject.
HENRY P. MANNING.
Providence, January, 1901.

목차

비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning
Contents
PREFACE ii
1 INTRODUCTION 1
2 PANGEOMETRY 3
2.1 Propositions Depending Only on the Principle of Superposition . 3
2.2 Propositions Which Are True for Restricted Figures . . . . . . . 6
2.3 The Three Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 9
3 THE HYPERBOLIC GEOMETRY 25
3.1 Parallel Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Boundary-curves and Surfaces, and Equidistant-curves and Surfaces 35
3.3 Trigonometrical Formulæ . . . . . . . . . . . . . . . . . . . . . . 42
4 THE ELLIPTIC GEOMETRY 51
5 ANALYTIC NON-EUCLIDEAN GEOMETRY 56
5.1 Hyperbolic Analytic Geometry . . . . . . . . . . . . . . . . . . . 56
5.2 Elliptic Analytic Geometry . . . . . . . . . . . . . . . . . . . . . 68
5.3 Elliptic Solid Analytic Geometry . . . . . . . . . . . . . . . . . . 74
6 HISTORICAL NOTE 79

한줄서평

  • 10
  • 8
  • 6
  • 4
  • 2

(한글 300자이내)
리뷰쓰기
한줄 서평 리스트
평점 한줄 리뷰 작성자 작성일 추천수

등록된 서평이 없습니다.