ÄÁÅÙÃ÷»ó¼¼º¸±â

SimulinkÀ» È°¿ë °ÇÁ¶ ±¸Á¶¹°ÀÇ Àü±â Áøµ¿¿ªÇÐ ¿¬±¸
SimulinkÀ» È°¿ë °ÇÁ¶ ±¸Á¶¹°ÀÇ Àü±â Áøµ¿¿ªÇÐ ¿¬±¸
  • ÀúÀÚBenjamin De Bari, James A. Dixon, Bruce A. Kay, Dilip Kondepudi Àú
  • ÃâÆÇ»ç¾ÆÁø
  • ÃâÆÇÀÏ2020-07-13
  • µî·ÏÀÏ2020-12-21
º¸À¯ 1, ´ëÃâ 0, ¿¹¾à 0, ´©Àû´ëÃâ 8, ´©Àû¿¹¾à 0

Ã¥¼Ò°³

Physical systems open to a flow of energy can exhibit spontaneous symmetry
breaking and self-organization. These nonequilibrium self-organized systems are
known as dissipative structures. We study the oscillatory mode of an electrically
driven dissipative structure. Our system consists of aluminum beads in shallow oil,
which, when subjected to a high voltage, self-organize into connected ¡®tree¡¯
structures. The tree structures serve as pathways for the conduction of charge to
ground. This system shows a variety of spatio-temporal behaviors, such as
oscillating movement of the tree structures. Utilizing a dynamical systems model of
the electromagnetic phenomena, we explore a potential mechanism underlying the
system¡¯s behavior and use the model to make additional empirical predictions.
The model reproduces the oscillatory behavior observed in the real system, and the
behavior of the real system is consistent with predictions from the model under
various constraints. From the empirical results and the mathematical model, we
observe a tendency for the system to select modes of behavior with increased
dissipation, or higher rates of entropy production, in accord with the proposed
Maximum Entropy Production (MEP) Principle.

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí
1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹À̼ǠÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀǠǥ½Ã 9
º¹¼ö µ¥ÀÌÅÍÀǠǥ½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹À̼Ǡ13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ǡ24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37

Á¦ 2Æí : ¿¬±¸³í¹®
Oscillatory dynamics of an electrically driven dissipative structure

1. Electrical self-organized Foraging Implementation 42
2. The charge-depletion model (CDM) 44
3. Materials and methods 48
4. Results 50
5. Stability analysis 53
6. Discussion 55
7. Conclusions 58
8. References 61

ÇÑÁÙ ¼­Æò