ÄÁÅÙÃ÷»ó¼¼º¸±â

SimulinkÀ» È°¿ë DyHAP : µ¿Àû ÇÏÀ̺긮µå ANFIS-PSO ¸ð¹ÙÀÏ ¾Ç¼º¾Û ¿¹Ãø ¹æ¹ý
SimulinkÀ» È°¿ë DyHAP : µ¿Àû ÇÏÀ̺긮µå ANFIS-PSO ¸ð¹ÙÀÏ ¾Ç¼º¾Û ¿¹Ãø ¹æ¹ý
  • ÀúÀÚFirdaus Afifi, Nor Badrul Anuar, Shahaboddin Shamshirband, Kim-Kwang Raymond Choo Àú
  • ÃâÆÇ»ç¾ÆÁø
  • ÃâÆÇÀÏ2020-07-13
  • µî·ÏÀÏ2020-12-21
º¸À¯ 1, ´ëÃâ 0, ¿¹¾à 0, ´©Àû´ëÃâ 8, ´©Àû¿¹¾à 0

Ã¥¼Ò°³

To deal with the large number of malicious mobile applications (e.g. mobile
malware), a number of malware detection systems have been proposed in the
literature. In this paper, we propose a hybrid method to find the optimum
parameters that can be used to facilitate mobile malware identification.We also
present a multi agent system architecture comprising three system agents (i.e.
sniffer, extraction and selection agent) to capture and manage the pcap file for
data preparation phase. In our hybrid approach, we combine an adaptive neuro
fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations
using data captured on a real-world Android device and the MalGenome dataset
demonstrate the effectiveness of our approach, in comparison to two hybrid
optimization methods which are differential evolution (ANFIS-DE) and ant colony
optimization (ANFIS-ACO).

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí
1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹À̼ǠÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀǠǥ½Ã 9
º¹¼ö µ¥ÀÌÅÍÀǠǥ½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹À̼Ǡ13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ǡ24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37

Á¦ 2Æí : ¿¬±¸³í¹®
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for
Predicting Mobile Malware

1. Introduction 41
2. RelatedWork 42
3. Research Methodology 44
4. Feature Selection, Extraction and Labelling 45
5. Proposed Approach 46
6. Evaluations 53
7. Conclusion 55
8. References 58

ÇÑÁÙ ¼­Æò