MATLAB & SimulinkÀ» È°¿ëÇÑ ¸¶ºñ·Î ÀÎÇÑ Á¦ÇÑµÈ È°µ¿¿¡ °üÇÑ ÆÐÅÏÀνĿ¬±¸(Cortical control of a tablet computer by people with
- ÀúÀÚPaul Nuyujukian, Jose Albites Sanabria, Jad Saab, Chethan Pandarinath, Beata Jarosiewicz Àú
- ÃâÆÇ»ç¾ÆÁø
- ÃâÆÇÀÏ2020-07-14
- µî·ÏÀÏ2020-12-21
- SNS°øÀ¯
- ÆÄÀÏÆ÷¸ËPDF
- ÆÄÀÏÅ©±â7MB
- °ø±Þ»çYES24
-
Áö¿ø±â±â
PC
PHONE
TABLET
ÇÁ·Î±×·¥ ¼öµ¿¼³Ä¡
ÀüÀÚÃ¥ ÇÁ·Î±×·¥ ¼öµ¿¼³Ä¡ ¾È³»
¾ÆÀÌÆù, ¾ÆÀÌÆеå, ¾Èµå·ÎÀ̵åÆù, ÅÂºí¸´,
º¸À¯ 1, ´ëÃâ 0,
¿¹¾à 0, ´©Àû´ëÃâ 8, ´©Àû¿¹¾à 0
Ã¥¼Ò°³
General-purpose computers have become ubiquitous and important for everydaylife, but they are difficult for people with paralysis to use. Specialized software
and personalized input devices can improve access, but often provide only limited
functionality. In this study, three research participants with tetraplegia who had
multielectrode arrays implanted in motor cortex as part of the BrainGate2 clinical
trial used an intracortical brain-computer interface (iBCI) to control an unmodified
commercial tablet computer. Neural activity was decoded in real time as a
point-and-click wireless Bluetooth mouse, allowing participants to use common
and recreational applications (web browsing, email, chatting, playing music on a
piano application, sending text messages, etc.). Two of the participants also used
the iBCI to ¡°chat¡± with each other in real time. This study demonstrates, for the
first time, highperformance iBCI control of an unmodified, commercially available,
general-purpose mobile computing device by people with tetraplegia.
¸ñÂ÷
Á¦ 1Æí : SIMULINK ±âº»Æí1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹ÀÌ¼Ç ÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀÇ Ç¥½Ã 9
º¹¼ö µ¥ÀÌÅÍÀÇ Ç¥½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹ÀÌ¼Ç 13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹ÀÌ¼Ç 24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37
Á¦ 2Æí : ¿¬±¸³í¹®
Cortical control of a tablet computer by people with
paralysis
1. Introduction 42
2. Materials and methods 42
3. Neural decoders 43
4. Results 45
5. Discussion 49
6. Conclusion 52
7. References 54