ÄÁÅÙÃ÷»ó¼¼º¸±â

Simulink È°¿ë µ¶¸³Çü ž籤 ½Ã½ºÅÛÀ» À§ÇÑ ÀÏüÇü ¹é½ºÅÜ ±â¹Ý MPPT Á¦¾î
Simulink È°¿ë µ¶¸³Çü ž籤 ½Ã½ºÅÛÀ» À§ÇÑ ÀÏüÇü ¹é½ºÅÜ ±â¹Ý MPPT Á¦¾î
  • ÀúÀÚKamran AliID, Qudrat Khan, Shafaat Ullah, Ilyas Khan, Laiq Khan Àú
  • ÃâÆÇ»ç¾ÆÁø
  • ÃâÆÇÀÏ2020-07-14
  • µî·ÏÀÏ2020-12-21
º¸À¯ 1, ´ëÃâ 0, ¿¹¾à 0, ´©Àû´ëÃâ 8, ´©Àû¿¹¾à 0

Ã¥¼Ò°³

PV (Photovoltaic) cells have nonlinear current-voltage (I - V) and power-voltage
(P - V) characteristics with a distinct maximum power point (MPP) that entirely
depends on the ambient meteorological conditions (i.e. solar irradiance and
temperature). Hence, to continuously extract and deliver the maximum possible
power from the PV system, under given meteorological conditions, the maximum
power point tracking (MPPT) control strategy needs to be formulated that
continuously operates the PV system at its MPP. To achieve this goal, a hybrid
nonlinear, very fast and efficient MPPT control strategy, based on the robust
integral backstepping (RIB) control, is formulated in this research article. The
simulation testbed comprises a standalone PV array, a non-inverting buck-boost
(NIBB) DC-DC power converter, a purely resistive and a dynamic load (sound
system). The proposed MPPT control scheme consists of two loops, where the first
loop generates the real-time offline reference peak power voltage through an
adaptive neuro-fuzzy inference system (ANFIS) network, which is then utilized in
the second loop as a set-point value for generating a control signal and then
forcing the PV system to be operated at this set-point by continuously adjusting
the duty ratio of the power converter. This control strategy exhibits no overshoot,
fast convergence, good transient response, fast rising and settling times and
minimum output tracking error. The MATLAB/Simulink platform is used to test the
performance of the proposed MPPT strategy against varying meteorological
conditions, plant current and voltage faults and plant parametric uncertainties. To
validate the superiority of the proposed control strategy, a comparative analysis of
the proposed control strategy is presented with the nonlinear backstepping (B),
integral backstepping controller (IB) and conventional PID and P&O based MPPT
controllers.

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí
1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹À̼ǠÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀǠǥ½Ã 9
º¹¼ö µ¥ÀÌÅÍÀǠǥ½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹À̼Ǡ13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ǡ24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37
Á¦ 2Æí : ¿¬±¸³í¹®
Nonlinear robust integral backstepping based MPPT control for
stand-alone photovoltaic system
1. Introduction 41
2. Significant contributions 42
3. Reference peak power voltage estimation through Adaptive
Neuro-Fuzzy Inference System (ANFIS) 44
4. Robust integral backstepping MPPT controller design 51
5. Simulation results and discussion 57
6. Conclusions and future research recommendations 69
7. References 69

ÇÑÁÙ ¼­Æò