µà¾ó ¸ðÅÍ Àü±âÂ÷ÀÇ ÃÖÀû ÅäÅ© ÃÖÀûÈ ¿¬±¸
- ÀúÀÚQingxing Zheng, Shaopeng Tian, Qian Zhang Àú
- ÃâÆÇ»ç¾ÆÁø
- ÃâÆÇÀÏ2020-07-13
- µî·ÏÀÏ2020-12-21
- SNS°øÀ¯
- ÆÄÀÏÆ÷¸ËPDF
- ÆÄÀÏÅ©±â15MB
- °ø±Þ»çYES24
-
Áö¿ø±â±â
PC
PHONE
TABLET
ÇÁ·Î±×·¥ ¼öµ¿¼³Ä¡
ÀüÀÚÃ¥ ÇÁ·Î±×·¥ ¼öµ¿¼³Ä¡ ¾È³»
¾ÆÀÌÆù, ¾ÆÀÌÆеå, ¾Èµå·ÎÀ̵åÆù, ÅÂºí¸´,
º¸À¯ 1, ´ëÃâ 0,
¿¹¾à 0, ´©Àû´ëÃâ 8, ´©Àû¿¹¾à 0
Ã¥¼Ò°³
In order to exploit the potential of energy saving of dual-motor powertrain oversingle-motor powertrain, this paper proposes a time-efficient optimal torque split
strategy for a front-and-rear-axle dual-motor electric powertrain. Firstly, a
physical model of electric vehicle powertrain is established in Matlab/Simulink
platform and further validated by real-vehicle experiments. Subsequently, a
three-layer energy management strategy composed of demanded torque calculation
layer, mode decision layer, and torque split layer is devised to enhance the total
operating efficiency of two motors. Specifically, the optimal torque split strategy
using adaptive nonlinear particle swarm optimization (ANLPSO) is embedded in the
torque split layer. Finally, two conventional strategies (even distributed strategy
and rule-based strategy) for dual-motor powertrain are considered for comparison
to verify the efficacy of the proposed strategy. Tremendous results demonstrate
that the dual-motor powertrain with this proposed optimal torque split strategy
develops energy saving by 11.88% and 12.18% against single-motor powertrain in
the NEDC and WLTP. Compared to two conventional torque split strategies, it is
able to reduce the total motor loss by 12.17% and 8.1% in NEDC and 11.91% and
8.07% in WLTP, respectively, which indicates the prominent optimization
performance and a great potential in realistic applications.
¸ñÂ÷
Á¦ 1Æí : SIMULINK ±âº»Æí1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹ÀÌ¼Ç ÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀÇ Ç¥½Ã 9
º¹¼ö µ¥ÀÌÅÍÀÇ Ç¥½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹ÀÌ¼Ç 13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹ÀÌ¼Ç 24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37
Á¦ 2Æí : ¿¬±¸³í¹®
1. Introduction 41
2. Powertrain Architecture and Model 43
3. Optimal Energy Management Strategy 46
4. Results and Discussion 50
5. Conclusions 59
6. References 60