ÄÁÅÙÃ÷»ó¼¼º¸±â

»õ·Î¿î Æз¯´ÙÀÓ : »ý¹°ÇÐÀû ¼¼Æ÷ÀÇ ÀÛ¿ë °¡´É¼ºÀ» Çü¼ºÇÏ´Â ¸ðµ¨¿¬±¸
»õ·Î¿î Æз¯´ÙÀÓ : »ý¹°ÇÐÀû ¼¼Æ÷ÀÇ ÀÛ¿ë °¡´É¼ºÀ» Çü¼ºÇÏ´Â ¸ðµ¨¿¬±¸
  • ÀúÀÚSucheta SehgalID, Nitish D. PatelID, Avinash Malik, Partha S. RoopID, Mark L. Trew Àú
  • ÃâÆÇ»ç¾ÆÁø
  • ÃâÆÇÀÏ2020-07-10
  • µî·ÏÀÏ2020-12-21
º¸À¯ 1, ´ëÃâ 0, ¿¹¾à 0, ´©Àû´ëÃâ 5, ´©Àû¿¹¾à 0

Ã¥¼Ò°³

Organ level simulation of bioelectric behavior in the body benefits from flexible
and efficient models of cellular membrane potential. These computational organ
and cell models can be used to study the impact of pharmaceutical drugs, test
hypotheses, assess risk and for closed-loop validation of medical devices. To move
closer to the real-time requirements of this modeling a new flexible Fourier based
general membrane potential model, called as a Resonant model, is developed that
is computationally inexpensive. The new model accurately reproduces non-linear
potential morphologies for a variety of cell types. Specifically, the method is used
to model human and rabbit sinoatrial node, human ventricular myocyte and squid
giant axon electrophysiology. The Resonant models are validated with experimental
data and with other published models. Dynamic changes in biological conditions are
modeled with changing model coefficients and this approach enables ionic channel
alterations to be captured. The Resonant model is used to simulate entrainment
between competing sinoatrial node cells. These models can be easily implemented
in low-cost digital hardware and an alternative, resource-efficient implementations
of sine and cosine functions are presented and it is shown that a Fourier term is
produced with two additions and a binary shift.

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí
1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹À̼ǠÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀǠǥ½Ã 9
º¹¼ö µ¥ÀÌÅÍÀǠǥ½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹À̼Ǡ13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹À̼Ǡ24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37

Á¦ 2Æí : ¿¬±¸³í¹®
Resonant model?A new paradigm for modeling an action potential of
biological cells

1. Reference action potential waveshapes 42
2. A Resonant model design compatible with hardware 46
3. Mutual entrainment 47
4. Parametrization of the Resonant model 49
5. Resonant model development for cardiac myocyte 53
6. Numerical implementation and simulations 53
7. Results 53
8. Discussion 58
9. References 63

ÇÑÁÙ ¼­Æò