̰,漺,Ȼ | ȭ
̽ ƴ ʼ! ġ Թϱ! ΰ ϱ ̽ ̿ϴµ, ӽŷ ̺귯 ġ ȰϿ پ ټ ϴ ˾ƺ. ġ ̽ ڵ ϱ ʴ. ڵ尡 ϰ ̵ ټ÷ο캸 ϱ ξ ٴ Ư¡ ִ. α ⺻ ظ ߰ ִٸ ų ڵ带 ۼغ غ ֵ Ͽ ǹ̸ Ȯϰ ִ. н ϱ ⺻ ڵ ۼ ý ȯ Ͽ, 鸮 ӽŷ, , ΰ ϰ Ȱ оߵ ˾ƺ. Ư ߰ ߰ Ͽ ڵ ڼϰ ϱ ʺڵ鵵 ִٴ ִ. ڵ带 ϱ ǽ ٿε ȭ Ȩ(infopub.co.kr) ڷǿ ϸ, н ñ github.com/Justin-A/DeepLearning101/issues ǵ ϴ.
Part 01 ġ 1. ̽ Ǵ Ƴܴ ġϱ 1.1 ̽ Ȩ ٿεϱ 1.2 Ƴܴٸ ̿ ̽ ٿεϱ 1.3 Ȩ ̽ ġϱ vs. Ƴܴٸ ̿ ̽ ġϱ 1.4 ȯ ϱ 1.5 Ʈ ġ 2. CUDA, CuDNN ġϱ 2.1 CPU vs. GPU 2.2 CUDA ġϱ 2.3 CuDNN ġϱ 2.4 Docker? 3. ġ ġϱ 4. ݵ ˾ƾ ϴ ġ ų 4.1 ټ 4.2 Autograd Part 02 AI Background1. ΰ() ǿ 1.1 ΰ̶? 1.2 ΰ 2. ġ 3. ӽŷ ǿ 3.1 ӽŷ̶? 3.2 ӽŷ 3.3 ӽŷ 3.4 н 4. 4.1 н 4.2 Ǯ ϴ 4.3 ռ (Training, Validation, Test , Cross Validation) 5. ΰ Ű 5.1 ۼƮ 5.2 Ű 6. ǥ Part 03 Deep Learning1. 2. ϰ 3. 4. ̲ ˰ 4.1 Dropout 4.2 Activation Լ 4.3 Batch Normalization 4.4 Initialization 4.5 Optimizer 4.6 AutoEncoder(AE) 4.7 Stacked AutoEncoder 4.8 Denoising AutoEncoder(DAE) Part 04 ǻ 1. Convolutional Neural Network(CNN) 2. CNN MLP 3. Data Augmentation 4. CNN Architecture 5. Transfer Learning Part 05 ڿ ó1. Data & Task: Ͱ ? 1.1 м(Sentiment Analysis) 1.2 (Summarization) 1.3 (Machine Translation) 1.4 (Question Answering) 1.5 Ÿ(etc.) 2. ڸ ڷ ǥϴ 2.1 Corpus & Out-of-Vocabulary(OOV) 2.2 Byte Pair Encoding(BPE) 2.3 Word Embedding 3. Models 3.1 Deep Learning Models 3.2 Pre-Trained Model ô - Transformer, BERT 4. Recap 4.1 ?5-3_model_imdb_glove.ipynb ڵ忡 4.2 ?5-5_model_imdb_BERT.ipynb ڵ忡 4.3 Part 06 Other Topics1. Generative Adversarial Networks(GAN) 2. ȭн 3. Domain Adaptation 4. Continual Learning 5. Object Detection 6. Segmentation 7. Meta Learning 8. AutoML