ȸ α â


α ޴

!  å

 󼼺
̽  ġ (Python Deep Learning PyTorch)


SMART
 

̽ ġ (Python Deep Learning PyTorch)

̰,漺,Ȼ | ȭ

Ⱓ
2020-11-27
PDF
뷮
46 M
PC
Ȳ
2, 0, 0
 Ұ
 Ұ
ټ

 Ұ

̽ ƴ ʼ! ġ Թϱ!

ΰ ϱ ̽ ̿ϴµ, ӽŷ ̺귯 ġ ȰϿ پ ټ ϴ ˾ƺ. ġ ̽ ڵ ϱ  ʴ. ڵ尡 ϰ ̵ ټ÷ο캸 ϱ ξ ٴ Ư¡ ִ. α׷ ⺻ ظ ߰ ִٸ ų  ڵ带 ۼغ غ ֵ Ͽ ǹ̸ Ȯϰ ִ.

н ϱ ⺻ ڵ ۼ ý ȯ Ͽ, 鸮 ӽŷ, , ΰ ϰ Ȱ оߵ ˾ƺ. Ư ߰ ߰ Ͽ ڵ ڼϰ ϱ ʺڵ鵵 ִٴ ִ. ڵ带 ϱ ǽ ٿε ȭ Ȩ(infopub.co.kr) ڷǿ ϸ, н ñ github.com/Justin-A/DeepLearning101/issues ǵ ϴ.

ڼҰ

հб а ϰ, ȸ 򽺸 . б а ڻ ִ. м ΰ ȸ ټ Ͽ м ΰ о߿ ̴. Ư װ ȭн , α  پ Ȱ ϰ ִ.

Part 01 ġ
1. ̽ Ǵ Ƴܴ ġϱ
1.1 ̽ Ȩ ٿεϱ
1.2 Ƴܴٸ ̿ ̽ ٿεϱ
1.3 Ȩ ̽ ġϱ vs. Ƴܴٸ ̿ ̽ ġϱ
1.4 ȯ ϱ
1.5 Ʈ ġ
2. CUDA, CuDNN ġϱ
2.1 CPU vs. GPU
2.2 CUDA ġϱ
2.3 CuDNN ġϱ
2.4 Docker?
3. ġ ġϱ
4. ݵ ˾ƾ ϴ ġ ų
4.1 ټ
4.2 Autograd

Part 02 AI Background
1. ΰ() ǿ
1.1 ΰ̶?
1.2 ΰ
2. ġ
3. ӽŷ ǿ
3.1 ӽŷ̶?
3.2 ӽŷ
3.3 ӽŷ
3.4 н
4.
4.1 н
4.2 Ǯ ϴ
4.3 ռ (Training, Validation, Test , Cross Validation)
5. ΰ Ű
5.1 ۼƮ
5.2 Ű
6. ǥ

Part 03 Deep Learning
1.
2. ϰ
3.
4. ̲ ˰
4.1 Dropout
4.2 Activation Լ
4.3 Batch Normalization
4.4 Initialization
4.5 Optimizer
4.6 AutoEncoder(AE)
4.7 Stacked AutoEncoder
4.8 Denoising AutoEncoder(DAE)

Part 04 ǻ
1. Convolutional Neural Network(CNN)
2. CNN MLP
3. Data Augmentation
4. CNN Architecture
5. Transfer Learning

Part 05 ڿ ó
1. Data & Task:  Ͱ ?
1.1 м(Sentiment Analysis)
1.2 (Summarization)
1.3 (Machine Translation)
1.4 (Question Answering)
1.5 Ÿ(etc.)
2. ڸ ڷ ǥϴ
2.1 Corpus & Out-of-Vocabulary(OOV)
2.2 Byte Pair Encoding(BPE)
2.3 Word Embedding
3. Models
3.1 Deep Learning Models
3.2 Pre-Trained Model ô - Transformer, BERT
4. Recap
4.1 ?5-3_model_imdb_glove.ipynb ڵ忡
4.2 ?5-5_model_imdb_BERT.ipynb ڵ忡
4.3

Part 06 Other Topics
1. Generative Adversarial Networks(GAN)
2. ȭн
3. Domain Adaptation
4. Continual Learning
5. Object Detection
6. Segmentation
7. Meta Learning
8. AutoML

ټ

  • 10
  • 8
  • 6
  • 4
  • 2

(ѱ 300̳)
侲
Ʈ
 ۼ ۼ õ

ϵ ϴ.